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A reliable sequence that allows for regiospecific incorporation of four alkyl substituents on an imidazole
ring has been developed. This procedure involves the addition of a substituted amino alcohol to a thio-
amide and subsequent oxidation with PDC. Unlike many imidazole syntheses, acid-sensitive functionality
is tolerated given the mild conditions.
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Scheme 1. Imidazole retrosynthesis.
Imidazoles are commonly utilized substructures within the
pharmaceutical industry, as these heterocycles impart unique
physical and biological properties to compounds of interest.1 With-
in the context of a recent medicinal chemistry program, we identi-
fied a promising 1,2-dialkyl imidazole template, which prompted
us to more fully investigate structure–activity relationships in this
new lead series. This required preparation of analogs with various
substituents at the 4- and 5-positions, resulting in tri- and tetra-
substituted imidazoles.

To enable higher throughput of target compounds, it was neces-
sary to carry out the imidazole ring formation in the presence of an
N-Boc group—a commonly employed amine protective group that
is easily removed under acidic conditions. Additionally, we found
that only alkyl substitution of the imidazole was tolerated, and this
presented further challenges toward the synthesis of these
compounds.2

There are several known methods for the preparation of poly-
substituted imidazoles. Two of the more common approaches in-
clude introduction of a substituted amine to a dicarbonyl
substructure,3 and acid-catalyzed cyclization of a masked aldehyde
or ketone onto an amidine.4 Use of these conditions requires protic
or Lewis acid conditions to effect deprotection of the carbonyl
group, which is not compatible with acid-sensitive functionality.
Further, the amino acetal or ketal subunits themselves often
require several synthetic steps to prepare.

We developed an efficient and mild sequence toward tri- and
tetraalkyl-substituted imidazoles, which could be performed on
late-stage intermediates. Importantly, imidazole formation pro-
ll rights reserved.

: +1 215 652 7310.
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ceeded cleanly and without loss of the N-Boc group. We proceeded
to explore the generality of this approach and envisioned tetrasub-
stituted imidazoles arising from three fragments (Scheme 1).
Amide bond formation would allow incorporation of the first two
substituents (R3 and R4), and the remaining two substituents (R1

and R2) could be introduced via an amino alcohol to yield tetrasub-
stituted imidazoles after oxidation and cyclization.

The sequence begins with EDC coupling of 3-phenylpropan-1-
amine (1) and 3-(4-fluorophenyl)propanoic acid (2) to give the
amide in high yield (Scheme 2).5 Treatment with Lawesson’s
reagent6 furnishes corresponding thioamide 3, which upon
condensation with a substituted vicinal amino alcohol (4) with
mercury(II) chloride assistance gives rapid formation of the inter-
mediate amidine (5), typically within 10 min at ambient tempera-
ture. Filtration of this mixture followed by addition of pyridinium
dichromate (PDC) directly to the filtrate and heating at 60 �C for 2 h
affords cyclized imidazole products (6) in good yields after aque-
ous workup7 and purification by silica gel chromatography.8 Of
note is the absence of either an aqueous workup or purification
of the amidine intermediate. Though generally useful as a means
of preparing tri- and tetraalkyl-substituted imidazoles, this proto-
col is particularly efficient when investigating variations of R1 and/
or R2, as analogs can be prepared in two steps from thioamide
starting material with a single workup and purification.
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Scheme 2. Synthesis of substituted imidazoles.

Table 1
Synthesis of substituted amino alcohols

OH
NH2

R

O

R H a) TMSCN, cat. ZnI2, CH2Cl2, 16 h

b) 1M LAH in Et2O, 0 °C to rt, 1 h

Entry R Yield (%)

1 81

2 F3C 87

3 91

4
O

92

5 O

O

75

Table 2
Formation of differentially substituted imidazoles: variation of R1 and R2

N
H

S

F

a)

R2

NH2

OH

R1

b) filter, then PD
3

4

Entry Amino alcohol

1
Me

OH
NH2

2

OH
NH2
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Substituted amino alcohols (4), where R1 = H (Scheme 2), are
readily available from reduction of the corresponding amino acids,
and several derivatives are also commercially available. For the less
common trisubstituted isomer, where R2 = H, we utilize a one-pot,
two-step protocol starting with aliphatic aldehydes (Table 1).9

Treatment with trimethylsilyl cyanide affords the silyl-protected
cyanohydrins, which are then reduced with lithium aluminum hy-
dride. The amino alcohols obtained after filtration are of sufficient
purity for subsequent transformations.

Isolated yields of several analogs of substituted imidazole 6 are
shown in Table 2.10 1,2,5-Trialkyl-substituted derivatives (entries
1–7) were synthesized from amino alcohols prepared using the se-
quence described in Table 1. Branched, fluorinated, and oxygen-
ated alkyl substituents are tolerated (entries 1–6),11 as is the
acid-sensitive acetal functional group (entry 7). This methodology
is compatible with aryl substituted amino alcohols as well, giving
the 5-aryl-substituted imidazole (entry 8). Generation of the
1,2,4-trialkyl-substituted isomers proceeds in a similar manner
(entries 9–11) though yields are generally lower. Again aryl substi-
tution is tolerated (entry 12).
N
N

F

R1
R2

C, 60 °C

, HgCl2, CH3CN

6

Imidazole product Yieldb (%)

N
N

Me
68

N
N 72



Table 2 (continued)

Entry Amino alcohol Imidazole product Yieldb (%)

3a

OH
NH2F3C

N
N

F3C
63

4
OH

NH2
F3C

N
N

F3C

69

5

OH
NH2

N
N 71

6

OH
NH2

O

N
N

O

72

7

OH
NH2

O

O
N

N

O

O 64

8

OH
NH2

N
N

75

9

OH
NH2

Me

N
N

Me

60

10

OH
NH2

N
N

66

11

OH
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Cl

N
N

Cl

60

12

OH
NH2 N

N

50

13

OH
NH2 N

N
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14

OH
NH2

Me

N
N
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Table 2 (continued)

Entry Amino alcohol Imidazole product Yieldb (%)

15

OH
NH2

N
N

68

16

OH
NH2

Me

N
N

Me

70

17

OH
NH2

NO

O

N
N

NO

O

62

a HCl salt of the amino alcohol was used with equimolar amounts of triethylamine.
b Isolated yield after column chromatography.
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1,2,4,5-Tetrasubstituted imidazoles containing either one or
two aryl substituents (entries 13–14) were prepared in good yield.
The cyclohexane-fused analog in entry 15 represents an interesting
approach to partially saturated benzimidazoles,12 and the utility of
this methodology is highlighted by the successful preparation of
differentially substituted tetraalkyl imidazoles (entries 16–17).
The cyclohexyl analog in entry 16 was synthesized from the corre-
sponding disubstituted amino alcohol13 in 70% yield from thioam-
ide 3. Further, tolerance of the N-Boc-protected piperidine moiety
in entry 17 demonstrates the mildness of this protocol.

In summary, we have optimized a two-step procedure for the
synthesis of tri- and tetraalkyl-substituted imidazoles starting
from readily available thioamides. This sequence proceeds under
mild conditions enabling preparation of compounds containing
acid-sensitive functionality. Additionally, aryl substitution at both
the 4- and 5-positions is tolerated. Finally, facile preparation of the
required substituted amino alcohols for use in preparation of 1,2,5-
trisubstituted imidazoles was described.
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